Topics

• DTFT and Frequency Response
• Ideal Sampling and Reconstruction
• DFT and FFT
Discrete Time Fourier Transform

\[X_d(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \]

\[x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_d(\omega)e^{j\omega n} d\omega \]

- Important Properties:
 - Periodicity by \(2\pi\)!
 - Linearity
 - Symmetries (Magnitude, angle, real part, imaginary part)
 - Time shift and modulation
 - Product of signals and convolution
 - Parseval’s Relation
Frequency Response

- For any **stable** LSI system: \(H_d(\omega) = H(z)|_{z=e^{j\omega}} \)

- What is the physical interpretation of this?
 - The DTFT is the z-transform evaluated along the unit circle!

- Why is the frequency response nice to use in addition to the z-transform?
 - \(e^{j\omega} \) is an *eigenfunction* of LSI systems
 - \(h[n] \star A e^{j\omega_0} = \lambda A e^{j\omega_0} = AH_d(\omega_0)e^{j\omega_0} \)
 - By extension:
 - \(x[n] = \cos(\omega_0 n + \theta) \rightarrow y[n] = |H_d(\omega_0)| \cos(\omega_0 n + \theta + \angle H_d(\omega_0)) \)
Magnitude and Phase Response

- Very similar to ECE 210
- Frequency response, and all DTFTs for that matter, are 2π periodic
- Magnitude response is fairly straightforward
 - Take the magnitude of the frequency response, remembering that $|e^{j\omega}| = 1$
- For phase response:
 - Phase is “contained” in $e^{j\omega}$ terms
 - Remember that cosine and sine introduce sign changes in the phase
 - When a cosine or sine changes phase, we have a contribution of $\pm \pi$ phase.
 - Limit your domain from $-\pi$ to π.
- For **real-valued** signals and systems:
 - Magnitude response is even-symmetric
 - Phase response is odd-symmetric
DTFT Exercise 1

- Let our signal be

\[h[n] = \{1, 2, 1\}. \]

a) Compute the DTFT of \(h[n] \).
b) Plot the magnitude response.
c) Plot the phase response.
DTFT Exercise 2

- Suppose we have a new system defined by a real-valued impulse response $h[n]$ with corresponding DTFT $H_d(\omega)$. We also know the following about the magnitude and phase responses:

$$|H_d(\omega)| = \begin{cases}
1, & \pi \leq \omega < \frac{3\pi}{2} \\
2, & \frac{3\pi}{2} \leq \omega < 2\pi
\end{cases}$$

$$\angle H_d(\omega) = \begin{cases}
-\frac{\pi}{4}, & \pi \leq \omega < \frac{3\pi}{2} \\
\frac{\pi}{4}, & \frac{3\pi}{2} \leq \omega < 2\pi
\end{cases}$$

a) Plot the magnitude response of $H_d(\omega)$ on the interval $-\pi$ to π.

b) Plot the phase response of $H_d(\omega)$ on the interval $-\pi$ to π.
Sinusoidal Response Exercise 1

- We have an LSI system defined by the following LCCDE:

\[y[n] = x[n] - 2x[n - 1] + x[n - 2]. \]

a) Find \(H(z) \).

b) Find \(H_d(\omega) \).

c) Find the output \(y[n] \) to each of the following inputs:

i. \(x_1[n] = 2 + \cos(\pi n) \)

ii. \(x_2[n] = e^{j\frac{\pi}{4}n} + \sin\left(-\frac{\pi}{2}n\right) \)
Ideal A/D Conversion

- Sampling via an impulse train will yield infinitely many copies of the analog spectrum in the digital frequency domain

\[X_d(\omega) = \frac{1}{T} \sum_{k \in \mathbb{Z}} X_a \left(\frac{\omega - 2\pi k}{T} \right) \]

- Important relations to recall:
 - Nyquist Sampling Theorem:
 \[\frac{1}{T} = f_s > 2B = 2f_{\text{max}} \]
 - Relationship between digital \(\omega \) and analog frequencies \(\Omega \):
 \[\omega = \Omega T \]
Ideal D/A Conversion

- Recall that our DTFT has infinitely many copies of our sampled analog spectrum.

- Ideal D/A conversion requires we perfectly recover only the central copy between $-\pi$ and π.
 - Digital signal is given notion of continuous-time back with a sampling period T.
 - We suppose that we have an ideal low-pass analog filter ("interpolation filter") with cutoff frequency corresponding to $\frac{\pi}{T}$.
Sampling Exercise 1

- Suppose we sampled some analog signal defined by
 \[x_a(t) = \cos(\Omega_0 t) \]
 with sampling period \(T = \frac{1}{1000} \) s to obtain the digital signal \(x[n] = \cos\left(\frac{\pi}{4} n\right) \). Which of the following are possible values for \(\Omega_0 \)? (There may be more than one!)

 a) \(250\pi \) rad/s
 b) \(\frac{\pi}{4000} \) rad/s
 c) \(-1750\pi \) rad/s
 d) \(4250\pi \) rad/s
 e) \(\frac{1}{8} \) rad/s
Sampling Exercise 2

• We have an analog signal $x_a(t)$ with CTFT $X_a(\Omega)$ with maximum frequency 4000π.

![CTFT of $x_a(t)$](image)

For each of the following sampling periods T, draw the sampled DTFT spectrum $X_d(\omega)$ on the interval -3π to 3π.

a) $T_1 = \frac{1}{8000} \ s$

b) $T_2 = \frac{1}{4000} \ s$

c) $T_3 = \frac{1}{2000} \ s$
Discrete Fourier Transform

\[X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}, \quad 0 \leq k \leq N - 1 \]

\[x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi kn/N}, \quad 0 \leq n \leq N - 1 \]

- What is the relationship between the DTFT and the DFT?

\[\omega_k = \frac{2\pi k}{N} \]

\[\omega_k \in \left\{ 0, \frac{2\pi}{N}, \frac{4\pi}{N}, ..., \frac{2\pi(N-1)}{N} \right\} \]
DFT Properties

- Periodicity by N
- Circular shift
- Circular modulation
- Circular convolution

We must amend our DTFT properties with the “circular” term because the DFT is defined over a finite length signal and assumes periodic extension of that finite signal.
Zero-Padding

- We can improve the **resolution** of the DFT simply by adding zeros to the end of the signal.

- This doesn’t change the frequency content of the DTFT!
 - No information/energy is being added.

- Instead, it increases the number of samples the DFT takes of the DTFT.

- This can be used to improve spectral resolution.
Windowing

- Recall that the DFT implies infinite periodic extension of our signal.
- This extension can lead to artifacts known as “spectral leakage”
- Window functions help with these artifacts
 - Rectangular window
 - Hamming window
 - Hanning window
 - Kaiser window
- Windowing is just multiplication in the time domain
 \[x_w = x[n]w[n] \]
- We care about the main lobe width and side lobe attenuation of these windows.
 - In particular, know the tradeoffs between the rectangular and Hamming windows
Fast Linear Convolution via FFT

- Convolution in the time domain requires $O(n^2)$ operations.
- By convolution theorem, perhaps we can do better in the frequency domain?
- Don’t forget multiplication in DFT domain is circular convolution in time.
- To avoid aliasing, we adopt the following procedure
- Given signal x and filter h of lengths N and L, respectively:
 1. Zero-pad x and h to length $N + L - 1$
 2. Take their FFTs
 3. Multiply in frequency domain
 4. Take the inverse FFT

This procedure takes $O(n \log n)$ operations.
DFT Exercise 1

• Surprisingly, we have another signal

\[x[n] = \cos \left(\frac{\pi}{3} n \right), \ 0 \leq n < 18. \]

a) For which value(s) of \(k \) is the DFT of \(x[n] \), \(X[k] \), largest?

b) Suppose now that we zero-pad our sequence with 72 zeros to obtain \(y[n] \). For which value(s) of \(k \) is \(Y[k] \) largest?