Topic Outline

- P vs. NP
- Undecidability
- NP-complete reductions
 - Graph gadgets
 - Input transformations
P vs. NP

- P - problems that can be \textit{solved} in polynomial time
- NP - problems that can be \textit{verified} in polynomial time
- NP-hard - problems that are at least as hard as NP problems
 - i.e. all NP problems can be reduced in polynomial time to NP-hard ones
- NP-complete - problems that are NP \textit{and} NP-hard
P vs. NP

- P
- NP
- NP-Complete
- NP-Hard

P ≠ NP

P = NP

Complexity
Undecidability

- Recognizable (recursively enumerable) - there exists a TM that can accept and halt all of the strings in the language, but we’re not sure what happens when the TM runs on other inputs
- Decidable - there exists a TM that can accept and halt on strings within the language, and reject and halt on strings not in the language
- Languages constructed from a TM (L(M)) are defined as a set of all strings accepted by a TM
True/False - Decidability and Recognizability

(A) The language A_{TM} is recognizable.
(B) The complement of A_{TM} is recognizable.
(C) If A reduces to B and A is decidable, then B is decidable.
(D) If $L \subseteq \{0\}^*$ then L is decidable.
(E) If L reduces to $\{0^n1^n|n \geq 0\}$ then L is decidable.
(F) If a problem is undecidable, then it can also be NP-HARD.
(G) If L_1 is decidable and L_2 is recognizable, then $L_1 - L_2$ is recognizable.
(H) If L_1 is recognizable and L_2 is decidable, then L_1L_2 is recognizable.
(I) If L_1 is recognizable and L_2 is unrecognizable, $L_1 \cap L_2$ is unrecognizable.
(J) The language $\{\langle M \rangle | M$ is a TM and $L(M)$ is countable$\}$ is decidable.
Consider a conjunctive normal form (CNF) formula F with all clauses being of size 2, except for 10 clauses that are of size at most 7 (i.e., these clauses are made out of up to seven literals). Consider the problem of deciding if such a formula is satisfiable. Assuming $P \neq NP$, this problem is in NP but not in P.
Say someone discovers two algorithms A_Y and A_N. Both algorithms read an undirected graph G and a number k. If G has an independent set of size k, then A_Y would stop in polynomial time and output YES, but A_N might run forever. Similarly, if G does not have an independent set of size k, then the algorithm A_N would stop in polynomial time and output NO, but A_Y might run forever. If this scenario were to occur, then we can conclude that $P = NP$.
NP-hard reductions

- Treat your algorithm as a black box
- Constrain the input into the black box so a Yes/No from the black box leads to a Yes/No answer to a known NP-hard problem
 - Constraining input usually involves encoding (booleans to real scenarios) or graph gadgets (cliques, stars, lines, etc.)
- You might need to use the black box more than once
- Any reduction must run in polynomial time
- To prove NP-completeness, must show how to verify a solution in polynomial time
- Any input transformation must be justified with a two-way proof
12. Prove that the following problem (which we call Match) is NP-hard. The input is a finite set S of strings, all of the same length n, over the alphabet $\{0, 1, 2\}$. The problem is to determine whether there is a string $w \in \{0, 1\}^n$ such that for every string $s \in S$, the strings s and w have the same symbol in at least one position.

For example, given the set $S = \{01220, 21110, 21120, 00211, 11101\}$, the correct output is TRUE, because the string $w = 01001$ matches the first three strings of S in the second position, and matches the last two strings of S in the last position. On the other hand, given the set $S = \{00, 11, 01, 10\}$, the correct output is FALSE.

[Hint: Describe a reduction from SAT (or 3SAT)]
Recall that a spanning tree T of a graph G with n vertices is a subgraph of G with $n - 1$ edges that contains all n vertices of G. Given that SPAN2 is NP-hard, prove that SPAN374 is also NP-hard.

SPAN2: Given an undirected graph G, does G contain a spanning tree in which every node has degree at most 2?

SPAN374: Given an undirected graph G, does G contain a spanning tree in which every node has degree at most 374?