1. For the following circuit, \(V_{BE\text{ON}} = 0.4V \), \(V_{CESAT} = 0.2V \), \(R_B = 20k\Omega \), \(R_C = 2k\Omega \) and \(\beta = 100 \). Find \(V_{CE} \) for the following input voltages.
 a. \(V_B = 0.3V \)
 b. \(V_B = 1.0V \)
 c. \(V_B = 1.4V \)
 d. Repeat a-c if there is now a diode with \(V_{on} = 0.7V \) placed between \(R_B \) and the BJT.

2. For the following circuit: \(V_{CC} = 8V \), \(R_C = 2k\Omega \), and \(V_{CESAT} = 0.2V \)
 a. Label the three regions of the \(i_C \) vs. \(V_{CE} \) curves. Hint: what are the regions of operation for a BJT?
 b. What is \(\beta \) of the transistor?
 c. Which of the values of \(i_B \) (20, 40, 60, 80 \(\mu \)A) force the transistor into saturation?

3. For the following circuit, \(V_{CC} = 5.2V \), \(V_{BE\text{ON}} = 0.7V \), \(V_{CESAT} = 0.2V \) \(R_B = 20k\Omega \), \(R_C = 1k\Omega \) and \(\beta = 100 \).
 a. Determine the values of \(V_{CE}, V_{CC}, V_{BE} \), and \(V_{BE\text{ON}} \).
 b. What is the maximum value of \(A \) that keeps the BJT in the active region when:
 i. \(V_I = 1.2 + Asin(\omega t) \)
 ii. \(V_I = 0.9 + Asin(\omega t) \)
 iii. \(V_I = 1.4 + Asin(\omega t) \)
 c. What is the voltage gain in the active region?
4. For the following circuit, \(V_{DD} = 6 \text{V}, R_D = 100 \Omega \) and \(I_I = 5 \text{mA} \).
 a. List the equations for \(I_D \) in the Ohmic and Active regions.
 b. Using the equations from part (a), determine the value of \(k \).
 c. Find the values of \(I_D \) and \(V_{DS} \) when:
 i. \(V_{GS} = 4 \text{V} \) and \(V_{TH} = 2 \text{V} \)
 ii. \(V_{GS} = 5 \text{V} \) and \(V_{TH} = 1 \text{V} \)

\[
C) V_{OC} = V_{DD} = 6 \text{V} \\
I_S = \frac{V_{DD}}{R_D} = \frac{6}{100} = 60 \mu\text{A}
\]
\[
I_{SC} = 60 \mu\text{A} = 1\text{mA}
\]
\[
D) I_D = 16I_1 \\
9I_1 \\
4I_1 \\
I_1 \\
V_{GS} - V_{TH} \\
10 \text{V}
\]
\[
V_{DS} = 1 \text{V}
\]
\[
V_{TH} = 2 \text{V}
\]
\[
I_{DS} = k(V_{GS} - V_{TH})^2 = \left(\frac{5 \text{mA}}{\text{V}^2}\right)^2 = 2.5 \text{mA}
\]
\[
V_{DS} = V_{DD} - I_D R_D = 6 - \left(\frac{2.5 \text{mA}}{100 \Omega}\right) = 6 - 0.025 \times 10^3 \Omega = 5.975 \text{V}
\]

5. Fill in the truth table for the following CMOS circuit where A, B and C are inputs and Z is the output.