HKN ECE 110 Exam 3 Review Worksheet

- 1. For the following circuit, $V_{BE,ON} = 0.4V$, $V_{CE,SAT} = 0.2V$, $R_B = 20k\Omega$, $R_C = 2k\Omega$ and $\beta = 100$. Find V_{CE} for the following input voltages.
 - a. $V_{in} = 0.3V$
 - b. $V_{in} = 1.0V$
 - c. $V_{in} = 1.4V$
 - d. Repeat a-c if there is now a diode with $V_{on} = 0.7V$ placed between R_B and the BJT

- 2. For the following circuit: $V_{CC} = 8V$, $R_C = 2k\Omega$, and $V_{CE,SAT} = 0.2V$
 - a. Label the three regions of the i_c vs. V_{CE} curves. Hint: what are the regions of operation for a BJT?
 - b. What is β of the transistor?
 - c. Which of the values of i_B (20, 40, 60, 80µA) force the transistor into saturation?

i_B(μA)

- For the following circuit, V_{CC} = 5.2V, V_{BE,ON} = 0.7V, V_{CE,SAT} = 0.2V R_B = 20kΩ, R_C = 1kΩ and β = 100.
 a. Determine the values of V₀₁, V₀₂, V_{i1}, and V_{i2}.
 - b. What is the maximum value of A that keeps the BJT in the active region when:
 - i. $V_i = 1.2 + Asin(\omega t)$
 - ii. $V_i = 0.9 + Asin(\omega t)$
 - iii. $V_i = 1.4 + Asin(\omega t)$
 - c. What is the voltage gain in the active region?

- 4. For the following circuit, $V_{DD} = 6V$, $R_D = 100\Omega$ and $I_1 = 5mA$.
 - a. List the equations for I_D in the Ohmic and Active regions.
 - b. Using the equations from part (a), determine the value of k.
 - c. Find the values of I_D and V_{DS} when:
 - i. $V_{GS} = 4V$ and $V_{TH} = 2V$
 - ii. $V_{GS} = 5V$ and $V_{TH} = 1V$

5. Fill in the truth table for the following cMOS circuit where A, B and C are inputs and Z is the output.

