1. For the following circuit, $V_{BE,ON} = 0.4V$, $V_{CE,SAT} = 0.2V$, $R_B = 20k\Omega$, $R_C = 2k\Omega$ and $\beta = 100$. Find V_{CE} for the following input voltages.

a. $V_{in} = 0.3V$
b. $V_{in} = 1.0V$
c. $V_{in} = 1.4V$
d. Repeat a-c if there is now a diode with $V_{on} = 0.7V$ placed between R_B and the BJT

2. For the following circuit: $V_{CC} = 8V$, $R_C = 2k\Omega$, and $V_{CE,SAT} = 0.2V$

a. Label the three regions of the i_c vs. V_{CE} curves. Hint: what are the regions of operation for a BJT?
b. What is β of the transistor?
c. Which of the values of i_B (20, 40, 60, 80\(\mu A\)) force the transistor into saturation?

3. For the following circuit, $V_{CC} = 5.2V$, $V_{BE,ON} = 0.7V$, $V_{CE,SAT} = 0.2V$ $R_B = 20k\Omega$, $R_C = 1k\Omega$ and $\beta = 100$.

a. Determine the values of V_{o1}, V_{o2}, V_{i1}, and V_{i2}.
b. What is the maximum value of A that keeps the BJT in the active region when:
 i. $V_i = 1.2 + Asin(\omega t)$
 ii. $V_i = 0.9 + Asin(\omega t)$
 iii. $V_i = 1.4 + Asin(\omega t)$
c. What is the voltage gain in the active region?
4. For the following circuit, \(V_{DD} = 6V \), \(R_D = 100\Omega \) and \(I_1 = 5mA \).
 a. List the equations for \(I_D \) in the Ohmic and Active regions.
 b. Using the equations from part (a), determine the value of \(k \).
 c. Find the values of \(I_D \) and \(V_{DS} \) when:
 i. \(V_{GS} = 4V \) and \(V_{TH} = 2V \)
 ii. \(V_{GS} = 5V \) and \(V_{TH} = 1V \)

5. Fill in the truth table for the following cMOS circuit where A, B and C are inputs and Z is the output.