HKN ECE 110 Review Session
Exam 3

COREY SNYDER
STEVEN KOLACZKOWSKI
Reminders

• You are allowed one 8.5x11” note sheet (two-sided)

• Additional office hours help

• Course staff applications

<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>All office hours are held in 1005 ECEB unless otherwise indicated. NAMES IN RED, EXAM WEEKS ONLY!</td>
<td>PROF. GRUEV</td>
<td>NOMAAN</td>
<td>PROF. GRUEV</td>
<td>REWA</td>
</tr>
<tr>
<td>10</td>
<td>PROF. CHOI (2050 ECEB)</td>
<td>NOMAAN</td>
<td>PROF. CHEN</td>
<td>PROF. CHEN</td>
<td>STEVEN</td>
</tr>
<tr>
<td>11</td>
<td>PROF. CHOI (2032 ECEB)*</td>
<td>NOMAAN</td>
<td>PROF. CHOI (2032 ECEB)*</td>
<td>NOMAAN</td>
<td>PROF. SCHMITZ</td>
</tr>
<tr>
<td>12</td>
<td>NOMAAN</td>
<td>NOMAAN</td>
<td>NOMAAN</td>
<td>NOMAAN</td>
<td>COREY, STEVEN</td>
</tr>
<tr>
<td>13</td>
<td>STEVEN</td>
<td>COREY, REWA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>NAUMAN</td>
<td>COREY, STEVEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>NAUMAN</td>
<td>GHAYOOR</td>
<td>COREY, REWA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>NAUMAN</td>
<td>GHAYOOR</td>
<td>COREY, REWA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>NAUMAN</td>
<td>GHAYOOR</td>
<td>COREY, REWA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NAUMAN</td>
<td>GHAYOOR</td>
<td>COREY, REWA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>NAUMAN</td>
<td>GHAYOOR</td>
<td>COREY, REWA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 10/5: Room 2050
Bipolar Junction Transistor (BJT)

- Three terminal device: Base, collector, emitter
- \(V_{BE,ON} \) and \(V_{CE,SAT} \) are properties of the BJT (ECE 340!)
- In ECE 110 we consider the Common-Emitter (CE) configuration
 - For more on this, take ECE 342!
- Three regions of operation: Off (Cutoff), Active, Saturation
- Off: \(V_{BE} < V_{BE,ON} \), all currents are zero!
- Active: \(V_{BE} > V_{BE,ON} \), \(I_C = \beta I_B \)
- Saturation: \(V_{BE} > V_{BE,ON} \), \(V_{CE} = V_{CE,SAT} \), \(I_C \neq \beta I_B \)
Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)

- Three terminal device: gate, source, drain
- Comes in two flavors, NMOS and PMOS, more on this in the next slide!
- V_{TH} is a property of the specific MOSFET (hello again ECE 340)
- Be comfortable interpreting I-V Characteristic of MOSFET

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Mode</th>
<th>Behavior under Linear Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{GS} < V_{TH}$</td>
<td>OFF</td>
<td>$I_D = 0$</td>
</tr>
</tbody>
</table>
| $V_{GS} > V_{TH}$
$V_{DS} > V_{GS} - V_{TH}$ | ACTIVE | $I_D = k(V_{GS} - V_{TH})^2$ |
| $V_{GS} > V_{TH}$
$V_{DS} < V_{GS} - V_{TH}$ | OHMIC | $I_D = k(V_{GS} - V_{TH})V_{DS}$ |
Complementary MOS Logic (cMOS)

- Combine NMOS and PMOS transistors in order to perform a logical operation
 - i.e. AND, NOR, NOT

- NMOS and PMOS are biased differently
 - NMOS, source connects to ground; PMOS, source connects to V_{DD}
Oh yeah and...

\[P = n a f C V_{DD}^2 \]

- \(n \) = number of capacitors
- \(a \) = activity factor
- \(f \) = frequency
- \(C \) = capacitance
- \(V_{DD} \) = applied voltage
Wise Words to Make your Score Soar

• Use your note sheet more like a study tool
• Spend your time showing what you know
• Make sure to get through the whole exam
• Look at past exams
• Take the time to relax before your exam